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BRAYTON CYCLE MAGNETOHYDRODYNAMIC POWER GENERATION
WITH NONEQUILIBRIUM CONDUCTIVITY
by John E. Heighway and Lester D. Nichols

Lewis Research Center

SUMMARY

Power densities of magnetohydrodynamic generators operating in a Brayton
cycle with nonequilibrium conductivity are computed. Helium, neon, argon, and
xenon with cesium seed are considered as working fluids in a constant-area,
constant-voltage segmented generator operating in the Faraday mode. The gen-
erator performance is specified by optimizing the cycle efficiency with respect
to load voltage and by optimizing output power density with respect to seed
fraction and operating pressure. The power density is determined as a function
of Mach number and magnetic field strength. Argon exhibits the highest power
density in the supersonic regime and neon the highest in the subsonic regime
for the particular generator and cycle considered.

INTRODUCTION

Techniques of magnetohydrodynamic power generation are being studied with
increasing interest for use in space as the development of high temperature
materials and high field strength magnets progresses. Devices using these
techniques are to take the place of the turbogenerator in a conventional power
generation cycle. BSeveral schemes have been proposed that combine Rankine,
Brayton, Ericsson, or hybrid cycles with liquids, vapors, and mixtures of these
two as proposed working fluids (refs. 1 to 4). Those devices that have a vapor
in the generator are especially adaptable to the space power requirements, but
the vapor has low electrical conductivity at temperatures compatible with ma-
terials. As a result, several schemes for increasing the electrical conduc-~
tivity at low gas temperatures have been proposed (refs. 3, 5, 6, and 7).

One such scheme may be used in a Brayton cycle where the working fluid is
an alkali metal vapor seeded in a noble gas. This scheme utilizes the induced
electric field of the plasma to increase the electron temperature (ref. 8).
This effect, sometimes called the Kerrebrock effect, has been studied exten-
sively (refs. 9 to 11). Each of these studies considers a particular noble gas
and seed for which high conductivity was attained. In these studies, however,
no attempt has been made to compare the behavior of different working fluids
for a specified generator operating under conditions appropriate for space
application.



In this study a constant-
area linear duct with segmented
électrodes operating as a Faraday
generator (ref. 12) is studied.
The magnetic field is constant
and unaffected by the fluid. The
current through each pair of
electrodes 1s adjusted so that
the generated voltage is con-
stant. The working fluid is a
noble gas seeded with cesium, and
the effects of viscosity and heat
conduction are neglected. Gen-
erators of this configuration
have been studied previously
(refs. 13 to 16). The studies of Neuringer and of Coe and Eisen consider both
constant and equilibrium conductivity dependent on local temperature, but nei-
ther considers nonequilibrium conductivity. Recently, McNab and Cooper
(ref. 17) presented solutions for this generator including the effect of non-
equilibrium conductivity for a helium cesium plasma. Their analysis is not for
a constant voltage but for a voltage proportional to the local velocity. They
included the effect of friction and heat transfer and discovered that the elec-
trical interactions are the dominant flow control mechanisms. Since they
showed that friction and heat transfer can be neglected, a study of a generator
with constant voltage and nonequilibrium conductivity will be made. The com-
parison between different seeded noble gas working fluids will be examined for
the optimum conditions to be obtained.

Figure 1. - Schematic representation of Faraday segmented generator.

ANALYSIS OF GENERATOR CHARACTERISTICS

A linear magnetohydrodynamic generator is analyzed using the one-
dimensional fluid flow equations. The fluid is considered to be a perfect gas,
and the effects of heat conduction and viscosity are neglected. The electrical
conductivity is to be calculated using the concept of magnetically induced
ionization (refs. 8 to 11), which implies an elevated electron temperature.
This elevated temperature is the result of an energy balance between the energy
added to the electrons by the induced electric field and the energy lost by the
electrons upon collision with the other particles. This energy balance is per-
formed in detail in the section DETERMINATION OF NONEQUILIBRIUM CONDUCTIVITY.

Development of Magnetohydrodynamic Eguations

The continuity, momentum, energy, and state equations for the generator
shown in figure 1 are the following (ref. 18):

%(pu)=0 (1)
pu%+%+jB=O (2)



pu %% + pud %% - JE =0 (3)
h=Ytl§- (4:)

where E, is the transverse component of electric field. (All symbols are de-
fined in appendix A.)

The restriction imposed by Maxwell's equation, curl E= - dB/dt, for a
constant magnetic field and a one-dimensional problem require that E; be a
constant, equal to -V/W, throughout the channel. This constant can be ex-
pressed as some fraction of the entrance open-circuit field upB as

v

K= 5o

where K will be called the load parameter.
The generator is assumed to be segmented, and the segments are assumed to

be infinitely thin, so that no axial currents flow. The proper Ohm's Law is
(ref. 11)

j = U(uB - %) (5)
-> - =
where ¢ includes Hall effects and ion slip, and J dis parallel to u X B.
The restriction that K be a constant places a restriction on the load re-
sistance Ry:

(AeJ)RL = (Aej)ORL,O = constant

where the subscript zero denotes entrance values. If all electrodes are given
the same area Ag,, the current can be eliminated as follows:

(6)

To solve the system of equations (1) to (4), the enthalpy h can be elim-
inated by using equation (4) and the momentum and energy equations. The re-
sulting expression can be integrated to obtain the following relation between
the pressure and velocity:

3
2 2 B _x pud) (_r Po%o
(ou® + p) = (poug + pg) = 7 (Y T Wt ) -\ WPo Y 3 (7)



At this point, it is convenient to introduce the following nondimensional
variables and parameters:

o =
U= o Ky K
b= B W =1 _2_(1 L)
=T 2 1 - "r+1 Ry
Po%o %
2 utz)po
_ 2 =
Mg = ?55— ré = (1 - Kp) (M - Kp)

Equation (7) may then be expressed as
YP—U-I-—-!-—L U -X ._T_z_ (8)
- 2 170 -K

Equation (8) represents the relation between pressure and velocity. Since
the duct is segmented with infinitely thin segments, the power developed in the
generator can be obtained by integrating the product of voltage and current
VjH dx over the length of the generator:

L
T = VjH dx = pougKWH <i + —lg) - (U + P) (9)
0

This power can be compared to the total enthalpy flux entering the generator:

y Po 1 2
= —_— =
Total enthalpy flux pOuOWH<f "I, 2 uo) (10)
The ratio of these terms is called the conversion effectiveness Meony and
may be written as
Ki(1 - U) (U - M)
(11)

Meonv = (U = Kl) My

The power output of a generator with a specified inlet condition can now be
determined. In order to calculate the output power density, however, a rela-
tion between velocity and generator length must be determined. The two vari-
ables, dimensionless conductivity 2 = o/co and dimensionless interaction

length £, defined by

2
0~B“x
0
£ =

PoYo



are introduced. Equation (2) can then be written as

;‘—g(U+P)+Z(U-K)=O (12)
which can be expressed as
' 1+ P
U
£ = STOY@ -8 W (13)
U

Equation (13) provides a relation between U and the interaction length. An
expression for BP/BU can be obtained by differentiating equation (8):

P .1 T+ 1 iy a
UTT T or [l+(U-K1)] (14)

so that equation (13) becomes

1_(_T_2
T+ U-K&
€= S{0) (T = &)

au (15)

U

It is noticed that if the conductivity is constant (£ = 1), equation (15) can
be integrated:

Sconst = B {[l i (Y'KE)Z]M(%I %) ¢ (%92 lnt_:_%) - (TTY)Z r (1 -lKl -U-lKl)}
(16)

which is in agreement with the results of other investigations (refs. 1, 16,
and 19).

By using equation (15) for interaction length, it is possible to express
the output power density as follows:

T K (v +1)(1 - U)(U - M)
P = T = “ovoP 2(r - (U - K¢ (27)

This is the power density for a constant-area generator. It is of interest to
gage the effect of velocity variation as well as conductivity variation. The



power density at the entrance to the generator is

P, = cougBBK(l - K) (18)
The ratio of equation (17) to equation (18)

(r+1)(1 - 0)(U - M)
P~ T 2rE(U - K) (1 - K) (19)

will be used for comparison. This ratio will be calculated for the constant
conductivity case, where §&.,..¢+ 1is gilven by equation (16), and for & as de-
termined from equation (15) by use of the nonequilibrium conductivity.

The cycle thermodynamic efficiency may be conveniently expressed in
terms of a generator (isentropic) efficiency. This efficiency, which is
defined as the actual change in total enthalpy of the working fluid in the
generator compared to the change in total enthalpy for an isentropic process
between the same total pressure conditions, is derived in appendix B. The
thermodynamic cycle efficiency for the Brayton cycle under conditions
appropriate for space application is also calculated in appendix B. Certain
limiting values for neonys however, can be obtained without specifying the
conductivity.

Limiting Case

From equation (13) it can be seen that, as U approaches K, § will ap-
proach infinity; obviously, this is a limiting value for U. This situation
represents the maximum interaction length and, consequently, the maximum amount
of energy that can be taken from the fluid. In some cases, however, the inter-
action length cannot become indefinitely large. It is limited by the phenom-
enon called "choking", which can be characterized by the criterion that the
local Mach number reaches 1. In the dimensionless symbols defined previously,
this condition is equivalent to

U= 7P (20)

This condition, when substituted into equation (8), leads to the following
specification of U at choking:

Uy, =K +7 (21)

It is noticed that this is the value of the velocity for which the integrand in
equation (15) is zero; that is, Uap 1s the condition that makes Ot /3U = 0.

Two different operation 1imits have been described: first, when U = K
and the duct is infinitely long, and second, when U = U, and the duct is
choked. For any generator operation the proper limiting value can be deter-
mined by considering the case where the duct is choked at infinity. Formally
speaking, this occurs when U, = K. This condition can be substituted into
equation (21) and the X for which this occurs (call it K_) can be determined

6
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Figure 2. - Load parameters for maximum thermal efficiency and infinite choking length for initial
compressor efficiency of 0, 80,

from the following:

K, = %

which may be written as

V(T-l) (1 - )2 (r = 1)(1 + M)
i Sl

a

1- (r - 1) (2)

The criterion for distinguishing between the two limiting case may therefore
be stated as follows: For K > Ky, the duct will not choke and U will ap-
proach K, while for K < K., the duct will be choked and U will approach
Uape The duct i1s infinitely long and choked for K = Ky. When 7T = 5/5, Koo
is as shown in figure z. It is noted that for My < 1 +the duet will always
choke, if sufficiently long, since K must be less than 1; whereas, as shown
in equation (22) K, must be greater than unity.

The quantity neopy can be calculated from equation (11) and Ng from
appendix B for a specified ¥ and Mach number as a function of XK. Therefore,
the thermal efficiency 14, can be calculated by means of equation (Bll) for a
specified compressor efficiency and regenerator effectiveness. In figure 3(a)
(p. 8) this efficiency is plotted for ¥ = 5/3, My = 2.0, and Neomp = 0-8
with regenerator effectiveness as a parameter. Two items should be noted:
First, the efficiency has a maximum at some values of K, and second, this
value of K 1s independent of 1, even though the efficiency varies with 1.,
(this is true for all supersonic Mach numbers). The value of K also depends
on ncomp but that dependency will not be investigated.

In figure 3(b) the efficiency is plotted again as a function of K with
Y =5/3 and Teomp = 0¢8> but with 7, = 0 and Mach number as the parameter.

It can be seen that the K for the optimum efficiency does depend on the Mach
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number. The value of K for which the thermodynamic efficiency is optimized
is called Ky, and is shown in figure 2.

In figure 3(c) the efficiency at K =X and Neomp = 0.8 is plotted

as a function of Mach number with regenerator effectiveness as a parameter. It
can be seen that it is advantageous to operate in the region away from Mach 1,
regardless of regenerator effectiveness.

In summary, it may be stated that a value of load parameter which maxi-
mizes the thermodynamic efficiency for the limiting solution has been calcu-
lated. This value is independent of the regenerator effectiveness, but depend-
ent on Mach number, and the compressor efficiency (assumed to be 0.8 for all
calculations presented herein). For the limiting solutions the efficiency is
independent of the form of the electrical conductivity. Of course, the elec-
trical conductivity of the plasma is of great practical importance in that it
largely determines the generator length required to extract power, which in
turn determines the output power density of the generator. It is natural,
then, to use the generator output power density as a means of comparing the
usefulness of various working fluids (the larger the better, of course). The
conductivity to be used in the calculation of output power density is that
which is determined on the basis of the theory of magnetically induced ioniza-
tion. This conductivity depends on the velocity as well as the usual param-
eters.

DETERMINATION OF NONEQUILIBRIUM CONDUCTIVITY

Unfortunately, it is not possible to present, in closed form, an expres-
sion giving the conductivity as a function of U and K. It is true, never-
thelesgs, that the conductivity is determined by U and K through a rather
extensive system of implicit relations. The following exposition is organized
in a manner paralleling the numerical computation procedure that was used to
solve this system of implicit relations. The system is treated as if the elec-
tron temperature is a parameter; that is, the process is begun by assuming
that the electron temperature T, 1s known, then a series of relations (each
calculable in terms of its predecessors) are developed, and finally, an equa-
tion for T, 1is deduced. In the numerical computation, this procedure is
iterated until the assumed and deduced values for Ty differ but little. The
conductivity together with several other quantities of interest are readily
calculated once the proper value for Te has been found.

Degree of Tonization

In accordance with Kerrebrock (ref. 8) and more especially Lyman, et al.
(ref. 11), it is assumed that the electron number density may be determined by
using the Saha equation with electron temperature (rather than the gas tempera-
ture) as an argument. The validity of this procedure is discussed in refer-
ence z20.

Since the carrier gas as well as the seed gas may be ionized, it is



TABLE T. - MOLECULAR PROPERTIES USED IN CALCULATIONS
Element Mass, Polarizability, {Tonization [Statistical |Statistical
kg mS potential, [weights for |weights for
ev atoms, ions,
Za Zi
Helium [6.645x10727| 2.14x10731 24.46 1 2
Neon |3.350x10-28| 3.97x10-31 21.47 1 6
Argon |6.631x10726| 1.64x10730 15.76 1 6
Xenon |2.18x10°2° | 4.00x10"3° 12.08 1 6
) -25
Cesium |2.206X107“°| -—--c-eeenn 3.89 2 1

necessary that the Saha equation be satisfied for each component. These are

3/2a
ngngt ~ ZoZg+ mekTe / oo - IS
0 Zg 2rhe kTe
; (23)
n_n 7.7 m_ kT 3/2 I
eet  “efet( eTe exp c
De e 25h2 kTe
J
where Doty Ngs Dots Do and n, are the local number densities of seed ions,

carrier atoms, and electrons, respectively. The Z's

seed atoms, carrier ions,
Ze =2 and Z= (2C + 1)(2¢ + 1)

are the statistical weights of the species:

where £ and & are the angular momentum and spin quantum numbers, respec-
tively. The pertinent values used for gases studied herein are given in
table I. Several convenient definitions are now introduced. The local total

heavy particle number density n 1s defined by

n=n +n4+n +n
c C+ S S+

Continuity in a one-dimensional flow demands that

nu=nouo

oY
_ Do
n=r17g

where
U=+
Yo
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and. the subscript zero refers to inlet conditiong. The seed ratio S is de-
fined by

n +n
s st

8= =0 (24)

The degree of ionization of the components is defined by

n n
+ ot

Y=g any fs nwas (25)
5] S

It is now possible to write

n

nt = X (n, + ng+) =X (1 - 8)n=Xx(1 - 8) .UE

ne = (1 - X)(ne + not) = (1L =X )(L - 8)n= (1 -X)(1 - 8) %3.

8o
g4 = Xg(ng + ns+) = Xg5n = X5 T

1o
ng = (1 -x)(n, + n+) = (1 -x)8n = (1 -X,)S T
By assuming approximate neutrality,
no

ng =10 4 + n_y = [éXS + (1 - S)Xc] T

Inserting these into the Saha equations leads to the following coupled equa-
tions for X, and Xg:

3/2
Xg U ZeZs+ mekTe Ig
1-X%g [SXS + (1 - S)XC] - ;16 Zg 21che AN kTe

3/2

X 2.7 .+ (m kT I
_._c__ [SX + (l - S)X = E € c e e exp |- —<
1-X L% ¢l ng Ze \guht kTe

(26)

In the numerical calculation, this pair of equations was solved by means of an
iterative technique; it is possible, of course, to uncouple them and work with
the resultant cubic equations.

Collision Frequencies

Having determined the degree of ionization of each species, the next step
in the procedure is to determine the relevant collision frequencies. This

11



analysis accounts for elastic collisions only. The effects of inelastic colli-
sions may be crudely estimated by the inclusion of loss factors, which repre-
sent the ratio of inelastic to elastic energy losses.

The symbol vppg 1s used to denote the average collision frequency for
momentum transfer from species A to species B. The formulation of this report
follows that of Burgers (ref. 21), the average collision frequency being re-
lated to his friction coefficient Kap by the relation

Ki
v S e——
AB  pppny

where Hap = mAmIJ)/(mA + mB) is the reduced mass, and n, is the number density

of species A, Without going into elaborate detail, it should be noted that

(and also v,n) incorporates the complete rate of change of momentum of
spec1es A due to collisions w1th species B; that is, in the momentum equation
for species A, the term KAB\uA - uB) represents the collision integral

.,.mA(VA - B) (88 /0t) Baco1l @9vp. Here ¥, is the particle velocity with dis-
tribution function fp, u, 1s the mean velocity of species A, and U 1is the
mean gas velocity.

The v may be expressed in terms of the monoenergetic beam cross sec-
tion Z2,p by the relation (refs. 21 and 22)

2 " 2 122
Vap = Dg Vé?[‘_ %.7\"6 2,p(c)e® /N5 ge (27)

0

where ¢ 1s the relative thermal speed, c = ch - CBI CA = VA - u, and

2kTy 2kTy
A = —— 4+ —— . This definition of A incorporates a generalization (due

mp g
to F. A. Lyman of Lewis Research Center) that allows for arbitrary species
temperature differences. For Tj = T = T, this reduces to the usual defini-
tion that is used in the references cited, A = 1/2kT7uAB The quantity in
brackets 1is denoted by‘.ghB and may be thought of as a collision cross section
for momentum transfer averaged for a Maxwellian distribution. This quantity
corresponds to Burger's Z&%l) multiplied by 1/ﬂ73 (ref. 21). This choice of a
normalizing constant is incidental and was suggested by the fact that -/8kT/mm
is usually regarded as the average thermal speed. It should be emphasized that
v as defined here is not the collision frequency used to calculate the
conventional mean free path; for that quantity, the integral analogous to that
in equation (27) involves the factor c¢3 rather than c¢S5. The higher power of
c appropriate for the momentum transfer collision frequency has the effect of
emphasizing the high energy portion of the beam cross section. In the case of
the heavy rare gases, which exhibit the Ramsauer phenomenon, this effect is of
particular importance.

12



For collisions involving electrons and some heavy species, it is a good
approximation to take

2kT

Ne

e

A =

With regard to collisions involving heavy particles, it has been assumed
that the temperatures of all of the heavy species are equal; in fact, they are
equal to the fluid bulk temperature T. In this case,

2kT
MaAB

A=

For the collision model assumed, however, the ion-atom collision frequency
turns out to be independent of the temperature (see appendix C).

The averaged electron-atom cross sections for the types of carrier and
seed gases considered are plotted in figure 4 (p. 14) as functions of electron
temperature. These averaged cross sections are based on equation (27) and the
monoenergetic beam cross section data of reference 23.

Since coulomb effects dominate in electron-ion collisions and since con-
sideration is restricted to singly ionized species,

éecﬁ‘= g%s+ =2,

e

and the total electron-ion collision frequency is defined as

8kTe — 8kTe
Mg g%i(Te) = ne e

Vei = Vect

E%i(Te)

T Vgt = (nc+ + ns+)

(28)

where the last step follows from the assumption of approximate charge neutral-
ity. In the calculation for vg; 1t is assumed that the usual Debye shield-
ing theory is applicable. The resultant Maxwell averaged collision fregquency
may be written as (ref. 24)

2
YV « = n{———=
el e 3 2 2<8k.Te)5/2 -~/81 e2n.-é;3
3n-mZe
e 0 Mg

and.

13
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To calculate ion-neutral collision frequencies it was assumed to be suffi-
cient to take account of polarization forces only, ignoring charge exchange
effects, which, of course, increase the collision frequency. Furthermore, a
simplifying assumption was made in deriving the cross section due to polariza-
+tion that underestimates the true cross section for momentum transfer. This
underestimation of the ion-neutral collision frequency results in conservative
estimates of generator performance because of overestimating ion slip; there-
fore, this underestimation was felt to be tolerable.
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As derived in appendix C, the ion-neutral collision frequency used is

T[CLBez 1/2
Vit g = ng . (30)

oM AB

where op 1s the polarizability of species B and Rag 1s the reduced mass
Hap = mAmB/(mA + mp). TFor this calculation of the collision frequency the ef-
fects of charge exchange have again been neglected. This calculation is cor-
rect at low ion temperatures, but it is in error at the higher temperatures.
In this report, the ion temperatures are limited to about 2000° K, for which
the error will be less than 50 percent in determining the ion mobility

(ref. 25). However, although the ion mobility affects the pressure at which
the ion slip becomes dominant, it does not have as strong an effect on the
power density. Furthermore, the error in ion mobility is in the direction that
underestimates the collision frequency so that the ion slip effects as calcu-
lated become important at higher pressures than would be predicted if the
charge exchange effects were included. Therefore, these calculations neglect-
ing charge exchange are also conservative. Finally, for ion-electron colli-
sions, noting that Z2.; = 2.,

@

KT,

ste ie e ¥ mmg

g%i = Vei

The previous discussion shows that all of the relevant number densities and
collision frequencies may be calculated if values of U and T are assumed.

Determination of Motion of Charged Species

For each of the species A (A = e, c+, s+, c, s) in the plasma a momentum
equation of the form

— - -> - - -> had
2: npapvap(tn - Ug) = muap(E + uy X B) - Vpy - mynpuy * Vuy (31)

B#A

is considered. Higher order effects such as those associated with heat flux
(ref. 21) have been ignored. In order to simplify this system the following
approximations are made.

Pressure gradient and inertia terms in the equations for the charged
species (e, c¥, s¥) are assumed to be small compared with the collision and
electromagnetic force terms and therefore are dropped.

The motion of the neutral seed gas 1s assumed to be dominated by colli-
sions with the neutral carrier gas, so that the neutral seed velocity is the

15



same as that of the neutral carrier gas.l Furthermore, by anticipating a low
overall degree of ionization, the neutral species velocity is approximated by
the mean (mass averaged) fluid velocity T1:

-> -> ->

Ug = Up =1
These approximations allow determination of the motion of the charged species
and, hence, the current density in terms of the mean velocity. The resultant
expression for the current (Ohm's law) together with the equations (1) to (4)
constitute a complete system determining the fluid dynamic variables u, p, P,
h, and the current density J. Incidentally, the momentum equation for the
fluid as a whole (eq. (2)) results from summing the individual species momentum
equations; the collision terms, of course, cancel in pairs.

In order to further simplify the sygtem, the seed and carrier lons are
asgsumed to move with the same velocity uj:

- - -
Ugt = Uet+ = Uj

The ion momentum may then be described by a single equation consisting of the
weighted sum of the equations for the seed ion st and the carrier ions ct
with the weights being nS+/(nS+ + nc+) and nc+/(ns+ + nc+), respectively. In
Justification of this approximation, it may be observed that the formulation is
exact in the limits ns+/nc+-+ 0 and nc+/ns+ - 0. Also, since ion~ion colli=-
sions are governed by the long-range coulomb interaction, the ion=-ion cross
section is very large so that above a certain degree of ionization the ions are

locked together, so to speak.

Finally, as discussed in the sectlon dealing with the collision fre-
guencies,

v cte ei

ste
+ = .
Vest ¥ Veet T Vei

Beg ™ Hee = T

The resultant equations for electrons and ions are

—> -
me(vec + Ves)(ﬁe - 1) + mevei(ﬁe “ﬁi) = -e(B +.ﬁe X B) (32a)

lThis simplification could lead to underestimation of ion slip in cases
where the seed possesses a very large polarizability. In this situation the
strongly interacting seed neutrals and ions might well slip together through
the carrier neutrals. In order to avoid this difficulty while retaining sim=-
plicity, in such cases the seed gas is assigned a ficticious polarizability
equal to that of the carrier gas.
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—c + +—5 +
n.+ + ngt (“ccvc'*'c p’csvc"'s) N+ + Nt (“csvs"'c “ssvs'*'s)

—

C [ - +tmey (T - Be) = e(B+ Ty x B) (32b)

By defining the transverse directio_lz (_L) as the direction of Z X -ﬁ and the
parallel direction (H) as that of wu, the solution to the system of equa-
tions (32) may be written as

E E
ue_!.:'@ee"'k-;})’*'ge%l' 1

> (33)

o
l_]
'—

It

)

I,_l
- y
+

=
to
il

+

)

l_l
|

where
- n~1]..2 2 W
O = G [vinven * vinvei(Vin + Ven) ¥ venwe]we
_ a-1[.2 2] 2
Qe =G [Vin + Vei(Vin + Ven) + (-De]we
\ (34)
- =12 a
=G [venvin *VerveilVen * vin) * vinwe]we
- ~=1.2 21 2
QG =G [ven * Veilven + vip) + we]we J

and where

2
= 2 2 21.2
G = [vinven + Vei(vin + Ven)] + [vin + Yen * 2vei(vin + Ven) * (De]a)e

<
]

1 ct st
in = mg (nc+ + ns+) (l-'-cch+c + ucsvc+s) + (—nc+ T n's+ (p-csvs+c + l-lssvs'l‘s)
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The coefficients © are related to the direct response to an electric field,
while the Q's are related to the precessional response to crossed electric
and magnetic fields. The quantity Vin 1s a hybrid ion collision freguency
modified by & mass ratio. When no seed is present, Vip Teduces to

m
Vete

Mg

If the carrier gas is not appreciably ionized, however,

v, = Pes y + Pss v
in " mg “stc " mg “sts

The phenomenological equation for the current (Ohm’s law) for the seg-
mented Faraday generator can be determined from equation (33).
Power Delivered to Electrons
The current in a segmented Faraday generator must first be determined.

When the electrodes are segmented, no axial current flows; j“ = 0. If
n, = ny, ue“ = uil. Then from equation (33)

E
—%L= e G+i> (35a)

. + 05

which may be written by the use of equation (34) as follows:

Ven) ®e )
Vin/\Ven +AY§;

l_kven ( Vei ) . < ®g ) ®e
- F v, ) .
Vin Ven " Vei Ven ¥ Vei/ Vin

E| = - (U - K)uyB (350)

For Ven/vin

Be
5 = - T pgg; (U - KB

where B, and B;, the electron and ion Hall parameters, respectively, are

We

Be =

Ven t Vei
.
1 Vvin
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Equation (35a) may be used in equation (33) to determine ug, and u;; so
that Jj; = eng(uj; - ug ) can be written as follows:

(0, + ©,)% + (9, - 9;)2 ( El>
u +

j, = en -= (36)
1 e @e + @i

B

which may, after reduction using equation (34), be written as

(v . + v )(D E
jl = en | — 11 en’ ¢ > u + ?é (57)
Vinven * Vei(vin * Ven) T g

or, by rearranging and inserting U = u/uo and K= ‘El/uOB’

v
n_e? o ven
= aT e+ ] = - (U - K)u,B
eWWen © Vei 1 1 Ven Vei + e e
in \Vei * Ven Ven T Vei/ Vin
(38)
Thus, the effective conductivity o i1is given by
v
n_e? 1+ ven
e .
e T S (502)
WelVen ¥ Vei 1+ Ven Vei + e e
Vin \Vei + Yen Ven + Yei/ Yin
For ven/vin << 1 +this reduces to the familiar form
2
n.e
e 1
o =~ (39b)
me(Vep + Vi) <} + BeBi>

In equations (39&) and (39b) for 0, the leading factor is the usual expression
for conductivity; the quantity in brackets may be thought of as accounting for
ion slip.

An energy balance for the electron species will presently be considered,
and for this the rate at which electrons acquire energy by virtue of their
motion in the electric field must be determined. This rate cannot be defined
in a completely unambiguous way, but rather depends on the frame of reference
in which the calculation is carried out. The frame of reference that will be
used moves with the mean (mass averaged) fluid velocity. This choice elimi-
nates the need to take account of directed energy in the calculation of the
energy lost by electrons in collisions with the heavy species; consequently,
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the energy lost is simply proportional to the difference in species tempera-
tures. An asterisk is used to denote vectors reckoned in this frame of refer-
ence. Thus, to find the power 9% delivered to the electrons in a unit of
volume, it is necessary to calculate

P, = n 0. - (-eE¥) (40)

where

From equation (33),
E E
* 1
Ug) = '®e(u + g) RS ‘BLL

u

|
1
®
[¢]
oo B
I
O
0]
e
+
=
N——”

and.
Ef = E + uB
X
B = &)

By straightforward substitution,

2 2
E E
P, = en u’BO, (1 + E%) + (%) (41)

For the segmented Faraday generator equation (35a) may be used to give E“ in
terms of E| + uB, and P, may be written as

2 2
Q. = 85 K
2 e i L
P = engu“BO |1 + <ée + @i) (} * uB)

Inserting the definitions given in equation (34) leads, after reduction, to
2 2.2
g% = nem'e(ven + Vei)Bew(U - K) Yo (42)

where
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14 Yen Vei ) 4 len De )‘De
Vin \Vei ¥ Ven Vin Wen * Vei/ Vin

y N ) 2 (4'3)
Ven Vei wé CDe
1+ T + |- T
YVin \Yei Yen Ven Yei/ Vin

<< 1, ¥ reduces to

For ven/vin

o (i) (24)
TF BPy

When equations (38) to (44) are used, J, and #. may be calculated for any
assumed values of U and Te.

Energy Balance for Electrons

The assumption made here is that at every point in the flow the rate at
which electrons acquire energy from the electric field is exactly balanced by
the rate at which they lose energy to the other species by collisions. The
former rate has Just been calculated; the latter is

' ~ (3 3
P = 0, E vej(z KT - 3 kTJ.) (45)

e

where Ve- is the collision frequency for energy transfer. Now for elastic
collisions between a light particle e and a heavy particle j, this collision
frequency is given to very good approximation by

where vg3 1s the collision frequency for momentum transfer. In order to ac-
count (very crudely) for inelastic collisions, loss factors aej may be intro-
duced as follows:

2m
~ e

Ved T my 6ejvej
It is also assumed that Tj = T for all the heavy species. Thus,
! -1 - k
ge = Sneme(kTe - kT) Z vejmj 6ej n 31'leme(ven * Vei)(Te - ?ii—A
Je
(46)
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where m is the average mass of the heavy particles, m = (1 - S)me + Smg
(again m,+ =m and met = ms), and A 1is a composite loss factor:

C
V_ - —
— S m
22 ) e (z?)aej (+7)
en ei J
J¥e

Equating the previous expression for ¢, to that for #. from equation (42)
results in

1 .2

T, = T+ ro 2 BoU(U - K)°

@&;

Now
T = TMGIUP

2
uo _ 2'_['
kY TMGTo

m

The equation used to determine the electron temperature may then be written as
_ 1 2 2
Te = TP%To[UP + N Be‘lf(U - K) ] (48)

For all calculations made herein A was calculated with ©®ej =1 for all
J. This procedure is valid for monatomic gases and for reasonably low electron
temperatures so that the calculations are consistent. The difficulty with this
procedure really stems from the fact that an elevated electron number density
corresponding to the elevated electron temperature can be realized only by in-
elastic ionizing collisions. It is assumed that this will be a small part of
the energy balance for the entire swarm of electrons. This may indeed be the
case, except for the fact that for this elevated electron temperature there
will be recombination, and the energy that the electron must lose when it re-
combines may be lost - not to the remaining swarm of electrons but possibly to
the walls by radiation (ref. 26). This effect diminishes as the electron tem-
perature increases because of superelastic collisions and as the optical path
increases because of absorption of the radiation in the body of the gas.

Since A, Be, and V depend on U and Tg, equation (48) may be viewed
as an implicit relation defining Tg as a function of U (P is a function of

U alone).

Since To(U) is determined, it is now possible to calculate o(U,T.),
using equation (39), and hence the value of I = 0/0y required in equation (15)
(GO is the conductivity at the entrance where U = 1).
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CRITERTA FOR COMPARING GENERATORS

The analytical model developed herein may be used to calculate the oper-
ating characteristics of the generator, provided that the numerous operating
parameters have been fixed. These include the nature of the working fluid
(the carrier gas and seed material used), the relative load voltage, the mag-
netic field intensity, and the inlet conditions (total temperature, pressure,
and Mach number).

One of the primary purposes of this analysis is to afford scme basis for
comparing the merits of various working fluids. It seems reasonable to expect
that such a comparison will possess a validity which transcends the limitations
of the present model (e.g., constant cross section duct). In any event, for a
given working fluid, it is necessary to decide in some logical fashion how to
set the values of the other operating parameters. In fact, in view of the
large number of parameters, it is highly desirable to eliminate from considera-
tion as many of these parameters as possible. In the present work this was
accomplished, when possible, by fixing certain parameters at values that opti-
mize generator performance.

Of course, the criteria which one uses in estimating generator performance
depend on the task that the generator is to accomplish. TIn the present work,
it has been assumed that the generator is to provide electric power for a space
vehicle. This means that low weight is of primary importance. In space, heat
rejection must be accomplished by means of a radiator, and it turns out that
the radiator weight is always important and frequently dominates the total
system weilght. Assuming that radiator weight is proportional to radiator area,
it is reasonable to impose the restriction of minimum radiator area. This re-
striction is treated in detail in appendix B, the main result being an expres-
sion (eq. (Bll)) for the thermodynamic cycle efficiency satisfying the minimum
area condition.

With the question of ground rules settled, it is now possible to iden-
tify the thermodynamic cycle efficiency as the primary measure of generator
performance. The efficiency is primarily a function of the generator conver-
sion effectiveness, which, in turn, depends in an involved manner on all of the
generator parameters, unless one conslders the limiting case of an infinite in-
teraction length £ (usually called the interaction parameter since it is di-
mensionless). In the limiting case the conversion effectiveness is found to be
dependent only on the entrance Mach number and the relative load voltage K.
The temptation is to fix the value of the relative load voltage by optimizing
the thermodynamic cycle efficiency using the limiting expression for conversion
effectiveness. Now the use of the limiting expression is, in a sense, un-
reasconable, since it corresponds to a generator of infinite length. The fol-
lowing modifications were introduced to avoid this difficulty. The optimizing
procedure gives, in addition to optimum values for relative load voltage and
thermodynamic cycle efficiency, an optimum value for the conversion effective-
ness. In the supersonic regime, the value of relative load voltage is reason-
able, but an infinite length is required to achieve the maximum conversion ef-
fectiveness. In this case, the actual generator length was taken to be that
length required to achieve 90 percent of the maximum value. In the subsonic
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regime, the optimizing procedure yields a relative load voltage of unity, cor-
responding to open~circuit conditions, and choking at infinity. Any reduction
of the relative load voltage results in choking at a finite length. In this
case, the relative lcad voltage was relaxed to a value of nine-tenths, and the
actual generator length taken to be that at which choking occurred. By this
procedure, the relative load voltage was eliminated as a free parameter by
specifying it to have that value which maximizes the thermodynamic cycle effi-

cilency.

In order to fix additional parameters, the output power density was con-
sidered as a measure of generator performance. The parameters fixed by opti-
mizing power output density are pressure and seed fraction. Actually, either
the pressure or the magnetic field intensity can be fixed. (It turns out that
pressure and field intensity are linearly related at optimum conditions, the
power output density being a monotonic function of either.) The magnetic field
intensity was left as a free parameter to insure that reasonable values thereof
were considered. Since both the efficiency and power output density are
strictly increasing functions of total temperature, this parameter was fixed
by choosing for it a not too unreasonably high value, namely 4000° R (22220 K).
Thus, all but two (magnetic field intensity and Mach number) of the operating
parameters were fixed.

Some further remarks regarding pressure and seed fraction are in order.
For particular values of magnetic field and Mach number, it is clear that an
optimum pressure exists. At very high pressures, the conductivity and the
power output density decrease (because of electron-neutral collisions) with
increasing pressure faster than the available energy increases. At low pres=-
sures not only does the available energy decrease with decreasing pressure, but
also the conductivity decreases because of ion slip. dJudging from the calcu-
lations performed, it appears that the ion slip effect is of dominant impor-
tance. With respect to the type of seed used, calculations show cesium (be-
cause of its very low ionization potential) to possess a clear-cut advantage
over the lighter alkali metals and thallium. Only the results with cesium as
seed material are therefore presented. Again for particular values of the
free parameters (magnetic field intensity and Mach number), an optimum value
for seed fraction exists, at least for the generator model considered. For
practical values of magnetic field, it turns out that for any noble carrier gas
and no seed the plasma still behaves over most of the duct length as a par-
tially icnized gas; that is, electron-neutral collisions are still important,
so that the conductivity increases with the electron number density. Thus,
increasing the seed fraction from zero improves the output power density. The
addition of seed, however, always has the effect of lowering the electron tem~
perature for reasons that may be traced to the very large elastic scattering
cross sections of appropriate seed materials. Although the results are not
presented, thallium seeding was investigated Just because of its relatively low
cross section. As is obvious from the Saha equation, lowering the electron
temperature has the effect of lowering the fraction of seed ionized. In adding
seed, then, a point is reached at which the gain in electron number density
that would be expected from having made available more seed to be ionized is
Jjust cancelled by the reduction of the fraction of seed ionized. Beyond this
point, of course, addition of seed material is detrimental to the output power

density.
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per square meter; entrance temperature, Ty, 555° K; per square meter; entrance temperature, T, 2175° K;
entrance pressure, P, 5 12x10° newtons per square entrance pressure, Py, 3. 874x10% newtons per square
meter; entrance fluid velocity, u, 1316 meters per meter; entrance fluid velocity, u,, 217,1 meters per
second; entrance electrical conductivity, o, 70L1 second; entrance electrical conductivity, o, 107.2
mhos per meter; entrance current density, jg, 5. 463x10° mhos per meter; entrance current density, j,, 4. 658x10
amperes per square meter; seed ratio, S, 3. ox10°4; amperes per square meter; seed ratio, S, 4.51x10°%;
entrance density, p,, 0.0443 kilogram per cubic meter, entrance density, p,, 0,0813 kilogram per cubic meter.

Figure 5. - Typical solution for generator.

RESULTS AND DISCUSSION

A1l calculations of output power density are made for the optimum condi-
tions outlined previously. The optimum K, called K ., is shown in fig-
ure 2 (p. 7). The determination of the optimum seed and pressure was done nu-
merically. The seed fraction and pressure were varied systematically until the
maximum power density was found. These calculations were carried out using an
IBM 7094 computer.

Calculations are made for helium, neon, argon, and xenon with cesium seed.
Other seed materials were considered and found to be inferior to cesium. The
atomic constants used in the calculations are shown in table I (p. 10). A
typical solution is shown in figure 5(a) for argon at Mach 3.0 and B of
2.0 webers per square meter. The only unusual behavior is in the conductivity
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variation. In the region for x/L less than 0.2 the seed is fully ionized so
that the carrier ionization contributes to the conductivity. At x/L = 0.2,
the carrier ionization becomes insignificant and the conductivity is determined
from the seed ionization only. This results in a less steep variation of con-
ductivity with x/L. A typical example for a subsonic duct is shown in fig-
ure 5(b) for argon at a magnetic field strength of 2.0 and a Mach number of
0.25. The variables behave in the inverse manner compared to the supersonic
case.

The curves in figure 6 for the constant magnetic field at 2.0 webers per
square meter show that the optimum pressure generally increases with Mach num-
ber (fig 6(a)) and the optimum seed generally decreases (fig. 6(b)). The power
density (fig 6(c)) reaches a peak in the subsonic Mach number region, decreases
at sonic velocity, and again increases with supersonic Mach number. Because of
the discontinuous change in K, the low supersonic Mach number power densities
are lower than the high subsonic Mach number power densities. It can be seen
that argon and neon are the best; argon is slightly better in the supersonic
region and neon slightly better in the subsonic region. Xenon is not quite as
good as either, while helium is inferior, especially at the high supersonic
Mach number. As a matter of fact, at Mach numbers greater than 1.5 the power
density for the helium carrier begins to decrease. This anomalous behavior can
be attributed to the much higher elastic cross section for momentum transfer
and the large ionization potential.

The results in figure 7 (p. 28) are for a fixed entrance Mach number of
3.0, and they show that optimum pressure, seed fraction, and maximum power den-
sity increase with magnetic field. For small magnetic fields neon becomes the
best working fluid, as the field increases argon becomes the best, and at very
high fields xenon may become superior. Helium is inferior, except possibly at
impractically small magnetic fields and power densities.

It is possible to compare the constant area generator to a constant ve-
locity generator by means of equation (19) both for constant and variable con-
ductivity. This comparison is made in figure 8(a) (p. 29) for subsonic and
figure 8(b) for supersonic Mach numbers. The comparison for constant conduc-
tivity can be used to illustrate the effects of the constant area insofar as
this restriction causes the velocity to change. For subsonic flow, the power
density for the constant area generator is greater and for supersonic flow it
is less than for the constant velocity case. The effect of the variation in
the conductivity can be seen from these calculations by comparing the results
for the various working fluids with those for the case where conductivity is
assumed constant at the inlet value. With this comparison, it is possible to
talk about an average conductivity for the working fluid in the variable con-
ductivity calculation. In the case of subsonic flow, the average conductivity
is increased at lower Mach numbers, except for helium. At the very low sub-
sonic Mach numbers the electron temperature is not elevated above the gas tem-
perature for helium, primarily because the mobility of the electron is so small
that the factor B2 in equation (48) does not contribute to the electron tem-
perature. Hence, the average conductivity not only is lower than that for
other gases, but also lower than that for a constant conductivity at the en-
trance value. This occurs because the static temperature is decreasing in the
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axial direction.

For the supersonic cases, the average conductivity for all gases is always
less than the entrance conductivity. Helium has an average conductivity that
is at least an order of magnitude less than all other working fluids. This is
another manifestation of the high collision cross section of the neutral helium
atoms and large ionization potential.

CONCLUDING REMARKS

The following conclusions can be drawn from this study of Brayton cycle
magnetohydradynamic power generation with nonequilibrium conductivity:

1. Thermal efficiency changes little for Mach numbers greater than 3.0 in
the supersonic case, but it decreases monotonically with increasing values for

the subsonic case.

2. Optimum pressures generally decrease with increasing molecular weight,
whereas optimum seed generally is lowest for neon and argon. The optimum value
of seed fraction was always less than 0.0005 for argon and cesium.,

3. Optimum power densities change 1ittle for Mach numbers greater than 3.0
(except for helium) in the supersonic case, and they increase in the subsonic
region to a maximum at Mach 1.0. When considering power density and effi-
ciency, it seems that Mach 3.0 is a good operating point for the supersonic
region, and Mach 0.5 for the subsonic. Argon is the best in the supersonic
region, and neon the best in the subsonic region.

4, The optimum seed, pressure, and power density increase with increasing
magnetic field strength; consequently, it is desirable to have as large a field

strength as possible.

5. The average conductivity is highest for neon and xenon in the subsonic
region, and for argon in the supersonic region.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, December 2, 1964.
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APPENDIX A

SYMBOLS
electrode area
radiator area
machine efficiency parameters
magnetic field strength
Impact parameter
particle speed

components of electric field, defined on p. 17

electric field and components in coordinates moving with particle
electric fields
electron charge
force

collision parameter
dipole moment

height of electrodes
enthalpy

Planck constant
ionization potential
unit dyad

current density and components parallel and perpendicular to
magnetic field

ratio of voltage to open-circuit voltage
load voltage parameter, defined on p. 4
ratio of voltage to open-circuit voltage for infinitely long duct

Boltzman's constant
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generator length

Mach number

entrance Mach number, defined on p. 4

Mach number parameter, defined on p. 4

mass of electron, carrier atom, and seed atom
total number density

electron number density

seed neutral and carrier neutral number density
gseed ion and carrier ion number density
nondimensional pressure, defined on p. 4
output power density

power density delivered tc and lost by electrons
pressure

heat

average cross section for momentum transfer
charge

load resistance

radius

-

rl/rl
seed ratio
entropy

average temperature

electron temperature



T 5T, Ty

T, Ty, e

T T

5'278

thermodynamic cycle temperature

time

nondimensional fluid velocity, defined on p. 4
choking velocity

fluid velocity

neutral and ion velocities

relative velocity of electrons

electron and ion velocity components, defined on p. 17

seed and carrier neutral and ion velocities

voltage

distance between electrodes
thermodynamic work delivered by cycle
parameters in eq. (B7)

degree of ionizagtion of carrier and seed
axial coordinate

(pp /o )(T-1) /¥

statistical weight

T,/T,

polarizability

Hall parameter

ratio of specific heats
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JAN composite loss factor

B¢ loss factor for collision with jth species

€opr effective emissivity of radiator

€0 dielectric constant

ncomp compressor efficiency

Neonv conversion effectiveness

Ny regenerator effectiveness

g isentropic efficiency

Mip thermal efficiency

0.,0; parameters defined in eq. (34)

A relative thermal speed, eq. (27)

HecrHeg?

HoorHag? reduced mass

Hgg?

Vag average collision frequency for momentum transfer from species A

to B

;ej electron collision frequency for energy exchange with jth speciles
)

VecrVes?

collision frequencies

Yete?Vete?

Vetg?Vgts?

VensVei electron neutral collision frequency and electron ion collision
frequency

Vin ion-neutral collision frequency

3 interacting length
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I power output

o) density

Z nondimensional conductivity

o electrical conductivity

OgR Stefan-Boltzman constant

T parameter defined in eq. (12)

® potential

¥ ion slip factor defined in eq. (43)

0,0y  parameters defined in eq. (34)

w cyclotron frequency
Subscripts:

A,B species

a atom

c carrier

coll collision

comp compressor

const constant

e electron
H high

i ion

L low

max maximum

n neutral
rad radiated
S isentropic

] seed



0 entrance condition

Superscripts:

i vector

+ ionized particle
* moving coordinate
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APPENDIX B

THERMODYNAMIC CYCLE EFFICIENCY

A Brayton cycle is considered with temperatures defined as shown in fig-
ure 9. The compressor efficiency, generator (isentropic) efficiency, and the
regenerator effectiveness are defined as follows:

T, - T = q (Tzr -Tl)

comp
ng(T, - Tg) = T, - Tg, (B1)
T3 "TZI '—'-Tst -T6=T]r(T51 -Tzl)

where the primed subscripts denote actual state points in figure 9. It is of
interest to relate the generator efficiency g to the variables defined in

the text and to discuss some of the implications of the concept. The effi-

Heater
C 4
Compressor ’ Gener-
2' ator
L )
5[
! 6
Cooler Regenerator
(a) Schematic.

Temperature

Entropy
(b) Temperature-entropy diagram,

Figure 9. - Brayton cycle temperature definitions.
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ciency 1) can be expressed in terms of the solution to the generator equa-
tions as follows: From the definition of Ng*

T4 - T5, |

Mg =T, ~ Ty ~ T~ I -y

However, y = (T5/T4) = (pL/rH)(Y“l)/Y must also be expressed in terms of the
generator variables. The ratio of total pressures pL/pH is expressed in

terms of the dimensionless exit static pressure P, the exit gas velocity U,
and the total temperature ratio T51/T4:

P, PyMg (Ts'
Dy v/(y-1) \T
Py <PYM%U> / ) 4
so that
_ Neonv
Mg = T
= Neconv
1 -
2o\ T
U(TMOP)

It should be noted that this isentropic efficiency is based on total properties.
An isentropic change in total enthalpy that is not zero can occur if work is
being done. This can be illustrated by an argument due to F. A. Lyman (of
Lewis Research Center) as follows. From equation (3),

d U.Z = 3E
Mg B T

Multiplying equation (2) by u and subtracting from equation (3) yield

From the Second Law of Thermodynamics, however, the left side of this equation
can be written as

so that a constant entropy process can occur i1f o¢ approaches infinity. Hence,
for a magnetohydrodynamics generator, the isentropic efficiency compares the
actual generator to a generator using an infiritely conducting working fluid.
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The parameters y and 2z are defined as

¥

i (pL >(Y~l) /)
o >V 52 <1
T

The thermodynamic efficiency for zero pressure drop through the heater, regen-
erator, and cooler may be expressed in terms of these parameters as

(g eomp = 21 (1 - ¥)

B | e e o 7 I T e G T | S

If the cycle is to be used in the space enviromment, then it is desirable
to minimize radiator area. The temperature ratio 2z, which minimizes the area,
can now be determined. The heat radiated per unit electric power developed can

be expressed as

Qrag _ 1 - ™n

Win Nt
where
_ 4
Qrad - €effOSBArTave
and
3 3
4 STgTy
T =
ave > (B3)

2
T + T + T
6 T6 1 1

The area A, required for a fixed maximum temperature T4 can be obtained
from
T 4
CerrIsplafy _ 1 - My <T4 ) (B4)
T

Win Tth

ave

where ogp 18 the Stefan-Boltzmann constant. Equation (B3) is rewritten in
terms of

o
1]

(- )1 - (2 - ying)

M
z [yn + (L - y)
Neomp comp
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=
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. 3msMcomp
YT g
Figure 10. - Effect of regenerator effectiveness on solution of equation (BS).
by using equation (B3) to evaluate (T4/Tave)4 and (Bl) to eliminate-the temper-
ature terms. Then the area per unit power output becomes
4
o TA 1 -
Cerr’sB 4 ____ Mt 1 1 1 (55)
Win S &t (0 -2 |35,5 0 (4 4 p)d
Differentiation with respect to 2z produces the following equation for =z,

which minimizes A, in equation (B3):
3.3

ay“z

=3 (B6)
L5t 5" omp

z|4 -
(a + bz)

The solution to this fifth-degree polynomial can be obtained in two special
w and v are defined as

cases. The parameters
- yz 9
W o=
1-(1 - Y)T]S

(B7)

3y
v = 5Ncaomp
1-(1- yng
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Equation (B4) then becomes

(l - T]r)WB
wl4d - Z = v (B8)
(l -1, T L - E'WA
r vy ¥y
It may be seen that when N, = 1
v
W = ~—
. (29)
and when 1, = O (and b = 0),
w(4 - W) = v (B10)

These two solutions, which are plotted in figure 10, are nearly the same for
v < 2. As a matter of fact, there is a condition for which the solutions will
all be the same, namely, when the second term in the brackets of equation (B4)
is small compared to 4. It can be shown that if

1 - - Nconv

Ng 2 Neonv * ncomp(l + nr)

where

ng(l - ¥) = Neonv

then the second term will be less than 0.4. IF N = 1, the inequality is al-

ways true. For the remainder of the analysis it will be assumed that the param-
eters are chosen such that this inequality is satisfied. Then, the value of =z
that minimizes A, is

3
zZ = z nsncomp

and the thermodynamic cycle efficiency may be written as

L
7 Neonv (511)
T] - PR . . .— - - Bll
th 3 N
MeNeony * (1 = T]:r')[l v T]conv(l * Neamp T - y>]
For the limiting values of U, n, _ in equation (11) becomes
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or
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conv

T -1
My

Meonv =

(1 - Kmax) (Kmax - Ml)

Kl(l - Uch)(Uch B Mi)
BT

K>K

K<K



APPENDIX C

DERIVATION OF ION-NEUTRAL CROSS SECTION AND COLLISION FREQUENCY

An encounter is considered between a singly charged ion and an atom of
polarizability «. The polarizability is defined so that an electric field ﬁl

will induce in the atom an electric dipole moment E satisfying2

—
g = 4ﬂeodﬁl (c1)
The atom is located at the origin, and the ion at r The electric field

l‘
at the origin, due to the ion, is the field that gives rise to the atom's polar-
ization; thus,

Pal
er

= 1

E) = - ;T———7§ (c2)
e Ty

where r = rl/rl. The dipole moment induced by the ion is then
1

A
= - . Xr .
g = 4ne B = r2 1 (c3)
1

The dipole E gives rise to its own field Ez given generally by

Ex=——=(3rr -1I) . g (ca)
4re
0
R
where I 1is the unit dyad.

In particular, for r = ¥, (i.e., at the ion),

2ae ~
B - ol (cs)
ﬂeorl

The force ? acting between the ion and the polarized atom is thus given by

2
- - 2ae A
F = eE2 - - 5 1 (06)
4ﬂeorl

ZNearly all data regarding polarizability have been compiled in cgs - esu
units. In this system, o (in cu cm) is defined by p = dﬁ, which becomes, in
rationalized mks units, equation (Cl) where ap; . = 10%, cgs
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oo and the potential ¢, adjusted to be zero at
<T- ry = o, may be written as
by

|

2
o.e
¢=-—7 (c7)
Bﬁeor

by dropping the subscript on r. In order to
ensure that the estimate for the ion-neutral
collision cross section for momentum transfer
is conservative (i.e., is an underestimate),
the cross section is quite arbitrarily equated
to ﬂb%, where by 1is that impact parameter which separates inward-spiraling
orbits from passing orbits (see fig. ll). To find the cross section three
equations are employed: conservation of angular mamentum, conservation of
energy, and an asymptotic form of the momentum equation which states that the
orbit approaches a circle, with the attractive polarization force balanced by
the repulsive centrifugal force. These are, respectively,

Passing orbit

Figure 11. - Schematic of inward-spiraiing and passing
orbits.

HPbGC,, = HroCq (csa)
1 2
..1_' ch = = Mcz - &L (CBb)
2 @ 2 0 grer
00
ucz
2
0]
T = e (cse)
Zneoro

where p 1s the reduced mass, c, 1s the approach speed, and cog 1s the
speed in the circular orbit of radius ro. Eliminating cg between equations

(c8b) and (C8c) yields

1
ré = o— = (co)

2 1/2
c 2 2\1/2
b2 = nrd (—O) = Zﬂrg = 2n <oae ) —C:—L- = (ﬁ@e ) L (c10)
(=]

0 0 c, € g1 Coo

Thus, the conservative estimate for the collision cross section for mo-
mentum transfer between species AY and B (taking -+ =.mA) is
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1/2

2

k(e NS

QA+B = B ) 2 1 (c11)
€oMan AtB

Abbreviating c A*B to ¢ and defining o = —JZkT?pAB yield the average

collision frequency, which is given by (see eq. (27))

2, 2
- ‘IBKT £L1 5.-¢ /A
"ars T "B Vg 336 2, +p(c)ee M e

0
1/2 o

I ez

n B ) 8 L C4e_02/7\2 de

= np L
“oMas 3 /TN A

5. 1/2

T e

= ny (_q3§_> (c12)
“oMaB
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